
Sensors board for Raspberry Pi

Overview

Description
This is a small add-on board for the Raspberry Pi, containing six different sensors, an I/O expander chip, eight

discrete LEDs and an I/O header. Its purpose is to facilitate experimentation with the sensors and to gain

experience of the I2C bus and the SPI bus without the need for a breadboard and associated wiring.

Sensors
The sensors fitted to the board are as follows (Port expander included for completeness):

Table 1. Sensor connections

Sensor Device Connection Datasheet

Barometric Pressure MPL115A2 I2C address 60h MPL115A2.pdf

Light APDS-9300
I2C address 29h
GPIO17 (Interrupt)

APDS-9300.pdf

Temperature LM75B
I2C address 48h
GPIO22 (Overtemp Shutdown)

LM75B.pdf

Accelerometer MMA7660
I
2
C address 4Ch

GPIO4 (Interrupt)
MMA7660.pdf

Light Barrier TCPT1300
GPIO23 (Sender)
GPIO24 (Receiver)

TCPT1300.pdf

Hall Effect (Magnetism) AH1887
GPIO14 (South)
GPIO15(North)

AH1887.pdf

Port Expander MCP23S08
SPI address 20h
Device 0, CE0

MCP23S08.pdf

http://www.circuitsurgery.com/docs/MPL115A2.pdf
http://www.circuitsurgery.com/docs/APDS-9300.pdf
http://www.circuitsurgery.com/docs/LM75B.pdf
http://www.circuitsurgery.com/docs/MMA7660.pdf
http://www.circuitsurgery.com/docs/TCP1300.pdf
http://www.circuitsurgery.com/docs/AH1887.pdf
http://www.circuitsurgery.com/docs/MCP23S08.pdf

Expansion
The I/O port of the expander chip (fitted to the underside of the board) is connected to the eight LED’s

situated near the top of the board via a buffer IC. They are also connected directly to the expansion header on

the edge of the board to allow the user to connect to the outside world. These are not buffered and should

only be connected to 3.3volt logic signals.

Header Pin-out (viewed looking towards the board)

Table 2. Header Pinout

Pin Function

1 3.3 volts from Raspberry Pi

2 Ground

3 Expansion GPIO 0

4 Expansion GPIO 1

5 Expansion GPIO 2

6 Expansion GPIO 3

7 Expansion GPIO 4

8 Expansion GPIO 5

9 Expansion GPIO 6

10 Expansion GPIO 7

2

1

10

9

Getting Started

The details that follow make the assumption that the Raspbian Wheezy operating system is installed and that

the user has not already installed software and drivers to enable access to the I2C and SPI busses. If you have

already done so and are confident with their operation then this section may be skipped.

1. Make sure your operating system is up to date!

Ensure the Pi is connected to the internet and type:

 sudo apt-get update

Let the process complete.

2. Allow access to the I2C and SPI busses

Two files will need modifying. Firstly, the “Modules” file, which specifies the modules to be loaded when the

system boots. For the Raspian operating system, run Nano and modify the “Modules” file by entering:

 sudo nano /etc/modules

Add these two lines to the end of the code:

 i2c-bcm2708

 i2c-dev

Type “ctrl+x” and enter “y” to save the file.

Next, modify the άκŜǘŎκƳƻŘǇǊƻōŜΦŘκǊŀǎǇƛ-ōƭŀŎƪƭƛǎǘΦŎƻƴŦέ file. This will need to be edited so that the two

lines...

 blacklist spi-bcm2708
 blacklist i2c-bcm2708

... will be commented out by adding a “#” in front of them. Again, at the command line prompt, enter:

 sudo nano /etc/modprobe.d/raspi-blacklist.conf

...and then edit the two lines to read:

 #blacklist spi-bcm2708
 #blacklist i2c-bcm2708

Doing this will enable both the I2C bus and the SPI bus.

3. Install the I2C software tools

Now install the software tools for accessing the I2C bus.

Type:

 sudo apt-get install i2c-tools

This will install “i2c-tools” software library. Next, add a new user to the I
2
C group and restart the system:

 sudo adduser pi i2c
 sudo reboot

When the system has rebooted, you should be able to issue the command...

sudo i2cdetect -y 1 (or sudo i2cdetect -y 0 if you have an early version Raspberry Pi)

... and be presented with a table showing the available I
2
C addresses.

In order to be able to access I2C-tools via Python, the “python-smbus” package is also required. Type:

 sudo apt-get install python-smbus

That completes the basic setup for accessing the I2C bus.

4. Install the SPI bus software tools

Control of the SPI bus through Python requires the python-dev package to be installed. Type:

 sudo apt-get install python-dev

Now the python SPI wrapper needed for python to access the port can be installed. Type the following lines:

 mkdir python-spi
 cd python-spi
 wget https://raw.github.com/doceme/py-spidev/master/setup.py
 wget https://raw.github.com/doceme/py-spidev/master/spidev_module.c
 sudo python setup.py install

These lines will:

¶ Create a new directory called “python-spi”

¶ Move to the python-spi directory

¶ Fetch the setup script

¶ Fetch the SPI device software module

¶ Install the software device

That completes the setup to allow access to the I2C and SPI busses!

5. Install the sensors board.

Turn your Raspberry Pi off!

Installation of the board is quite easy. Installing the support pillar is not essential but it does add some extra

mechanical robustness. Insert the support into the hole of the sensors board. This may be tight, so be firm but

take care not to damage the components on the board, especially the light barrier.

Press the connector onto the GPIO port of the Raspberry Pi.

You are now ready to turn the Pi back on and get experimenting!

Demo Software
There are a number of Python scripts that you may download as a Zip file, called sensors-demo.zip, by clicking

the link or typing the URL directly: http://www.circuitsurgery.com/sw/sensors-demo.zip. Once downloaded,

unpack the files to the directory of your choice (your home directory is a good one!).

These are simple demonstration scripts for each of the sensors. Be aware that they are quite “rough ‘n’ ready”

and could undoubtedly be improved, however they serve to provide a starting point for your own software as

well as demonstrating the basic capabilities of the respective sensors.

The SPI Expansion Chip (MCP23008)
Fitted to the underside of the board, this chip is controlled over the SPI bus and is connected to the LEDs and

the expansion port. The Python script to demonstrate this is called “sensors-spi-demo.py”.

Run the script by typing:-

 sudo python sensors-spi-demo.py

The script will firstly set all ports to output and turn the LEDs off. It will then illuminate each LED in turn, back

and forth a couple of times. These conditions will also appear at the expansion header, so you will be able to

see the same happen if you connect the expansion header to some LEDs.

The script will now switch the ports to “input” one at a time and the LED’s will light as each port is pulled

“high” by a 10k ohm resistor. Connecting a port to ground will turn off the corresponding LED and the script

will acknowledge the condition by printing the port number connected to ground on the screen. This is an

endless loop and will need to be stopped by typing <ctrl+z>.

The Hall Effect (Magnetism) Sensor
This is the simplest of the sensors. The Python script to demonstrate this is called “sensors-hall-demo.py”.

Run the script by typing:-

 sudo python sensors-hall-demo.py

Get a magnet and place it close to the “Magnet” area of the Sensors board. The magnetism will be detected by

the Hall effect sensor and the polarity will be displayed on the screen and by either the left or right group of

four LEDs on the board.

The Infrared Light Barrier
This is again a simple sensor. The Python script for this sensor is “sensors-barrier-demo.py” and, as with the

previous script, can be run by typing:

 sudo python sensors-barrier-demo.py

Working with a perforated strip, this script will wait until the strip is placed in the sensor. Gently slide the strip

through the gap and the holes will be counted until the script determines that the strip has gone from the

sensor. The count will also be shown in binary form on the LEDs at the top of the board.

http://www.circuitsurgery.com/sw/sensors-demo.zip
http://www.circuitsurgery.com/sw/sensors-demo.zip

The Temperature Sensor
Once again, a fairly simple sensor, and again the script “sensors-temp-demo.py” can be run by typing:

 sudo python sensors-temp-demo.py

This script continually prints the temperature on the screen and also presents a coarse representation on the

on-board LEDs.

Note that the temperature detected by this sensor will probably be higher than the room temperature. This is

normal and is due to the warming effects of the components on the Raspberry Pi.

The Pressure Sensor
This is a slightly more complex sensor in terms of getting a meaningful reading from, although the end result is

a simple display of the current atmospheric pressure.

As before, type:

 sudo python sensors-press-demo.py

The script constantly calculates the current atmospheric pressure. Although the output is simple, the script

needs to read several registers and do some calculations to arrive at the result. The script is probably more

interesting than the output!

The Light Sensor
At the risk of becoming monotonous, the light sensor demo is run by typing:

 sudo python sensors-light-demo.py

The light sensor contains two halves. One “side” senses normal visible light, including the infrared component,

and the other senses just the infrared, which may be useful, for example, for detecting the output from an

infrared remote control.

When the script is first run, it initialises the sensor and prints confirmation that the sensor has been activated

to the screen, after which the light level is displayed on the LEDs as a single illuminated LED moving left to

right; the further right, the brighter the light.

The Accelerometer
Once again, the demo for this sensor is run thus:

 sudo python sensors-acc-demo.py

This is probably the most interesting of the six sensors, but also the most complex. With this device you are

able to detect movement of the board:

¶ Tilting and direction of tilt

¶ Movement and direction of motion

¶ Shaking

¶ Tapping

On running, demo script will ask the user to place the Pi on a flat, level surface and tap the board to signify

when it has been done. The LEDs are used as a kind of spirit level, starting off in the central position and

responding to the tilting of the board. Tilting left or right will cause the LEDs to “slide” left or right. Tilting

backwards will make them all light and disappear into the middle, whilst tilting forward will make them

reappear. Shaking the Pi will cause the LEDs to light in a pseudo-random fashion and tapping will make them

“jitter”.

Detail

The information that follows has, in the main, been taken from the respective deviceΩǎ

datasheet, repeated here for ease of reference.

MPL115A2 ɀ Barometric Pressure
The MPL115A2 is an absolute pressure sensor with a digital I2C output with the following features:

¶ Digitized pressure and temperature information together with programmed calibration

coefficients for host micro use.

¶ Factory Calibrated

¶ 50 kPa to 115 kPa Absolute Pressure

¶ ±1 kPa Accuracy

¶ 2.375V to 5.5V Supply

¶ Integrated ADC

¶ I2C Interface (operates up to 400 kHz)

¶ 7 bit I2C address = 0x60

¶ Monotonic Pressure and Temperature Data Outputs

Table 3. Device Memory Map

Address Name Description Size (Bits)

0x00 Padc_MSB 10-bit Pressure ADC output value MSB 8

0x01 Padc_LSB 10-bit Pressure ADC output value LSB 2

0x02 Tadc_MSB 10-bit Temperature ADC output value MSB 8

0x03 Tacd_LSB 10-bit Temperature ADC output value LSB 2

0x04 a0_MSB a0 coefficient MSB 8

0x05 a0_LSB a0 coefficient LSB 8

0x06 b1_MSB b1 coefficient MSB 8

0x07 b1_LSB b1 coefficient LSB 8

0x08 b2_MSB b2 coefficient MSB 8

0x09 b2_LSB b2 coefficient LSB 8

0x0A c12_MSB c12 coefficient MSB 8

0x0B c12_LSB c12 coefficient LSB 8

0x0C Reserved* --- ---

0x0D Reserved* --- ---

0x0E Reserved* --- ---

0x0F Reserved* --- ---

0x10 Reserved --- ---

0x11 Reserved --- ---

0x12 CONVERT Start Pressure and Temperature Conversion ---

*These registers are set to 0x00. These are reserved, and were previously utilized as Coefficient values, c11

and c22, which were always 0x00.

I2C Device Read/Write Operations

All device read/write operations are memory mapped. Device actions e.g. “Start Conversions” are controlled

by writing to the appropriate memory address location.

For I2C the 7-bit Device Address (from Table 2) has a read/write toggle bit, where the least significant

bit is ‘1’ for read operations or ‘0’ for write operations. The Device Address is 0xC0 for a Write and the

Device Address is 0xC1 for a Read.

The most significant bit in the Command tables below is not used and is don't care (X). In examples

given it’s set to ‘0’.

Refer to Sensor I2C Setup and FAQ Application Note AN4481 for more information on I2C communication

between the sensor and host controller.

Table 4. I2C Write Commands

Command Binary HEX(1)

Devices Address + Write bit 1100 0000 0xC0

Start Conversions X001 0010 0x12

X = Don’t care

1 = The command byte needs to be paired with a 0x00 as part of the I2C exchange to complete the

passing of Start Conversions.

The actions taken by the part in response to each command are as follows:

Table 5. I2C Write Command Description

Command Action Taken

Start Conversions

Wake main circuits. Start clock. Allow supply stabilization time. Select pressure sensor
input. Apply positive sensor excitation and perform A to D conversion. Select
temperature input. Perform A to D conversion. Load the Pressure and Temperature
registers with the result. Shut down main circuits and clock.

Table 6. I2C Read Command Description

Command Binary Hex
(1)

Device Address + Read bit 1100 0001 0xC1

Read Pressure MSB X000 0000 0x00

Read Pressure LSB X000 0001 0x01

Read Temperature MSB X000 0010 0x02

Read Temperature LSB X000 0011 0x03

Read Coefficient data byte 1 X000 0100 0x04

X = Don’t care

1 = The command byte needs to be paired with a 0x00 as part of the I2C exchange to complete the

passing of Start Conversions.

APDS-9300 ɀ Ambient Light Photo Sensor
The APDS-9300 is a low-voltage Digital Ambient Light Photo Sensor that converts light intensity to digital signal

output capable of direct I2C interface. It has the following features:

¶ Approximate the human-eye response

¶ Precise Illuminance measurement under diverse lighting conditions

¶ Programmable Interrupt Function with User-Defined Upper and Lower Threshold Settings

¶ 16-Bit Digital Output with I2C Fast-Mode at 400 kHz

¶ Programmable Analog Gain and Integration Time

¶ 50/60-Hz Lighting Ripple Rejection

¶ Low Active Power (0.6 mW Typical) with Power Down Mode

Register Set
The APDS-9300 is controlled and monitored by sixteen registers (three are reserved) and a command register

accessed through the serial interface. These registers provide for a variety of control functions and can be read

to determine results of the ADC conversions. The register set is summarized in Table 7.

Table 7. Register Addresses

Address Register Name Register Function

-- COMMAND Specifies register address

0h CONTROL Control of basic functions

1h TIMING Integration time/gain control

2h THRESHLOWLOW Low byte of low interrupt threshold

3h THRESHLOWHIGH High byte of low interrupt threshold

4h THRESHHIGHLOW Low byte of high interrupt threshold

5h THRESHHIGHHIGH High byte of high interrupt threshold

6h INTERRUPT Interrupt control

7h -- Reserved

8h CRC Factory test — not a user register

9h -- Reserved

Ah ID Part number/ Rev ID

Bh -- Reserved

Ch DATA0LOW Low byte of ADC channel 0

Dh DATA0HIGH High byte of ADC channel 0

Eh DATA1LOW Low byte of ADC channel 1

Fh DATA1HIGH High byte of ADC channel 1

The mechanics of accessing a specific register depends on the specific I2C protocol used. In general, the

COMMAND register is written first to specify the specific control/status register for following read/write

operations.

For a full description of the functions of each of the registers, please refer to the datasheet.

http://www.circuitsurgery.com/docs/APDS-9300.pdf

LM75B Temperature Sensor
The LM75B is a temperature-to-digital converter which can be configured for different operation conditions. It

can be set in normal mode to periodically monitor the ambient temperature, or in shutdown mode to

minimize power consumption.

Features include:

¶ I2C-bus interface with up to 8 devices on the same bus

¶ Power supply range from 2.8 V to 5.5 V

¶ Temperatures range from -55 °C to +125 °C

¶ Frequency range 20 Hz to 400 kHz with bus fault time-out to prevent hanging up the bus

¶ 11-bit ADC that offers a temperature resolution of 0.125 °C

¶ Temperature accuracy of:

¶ ±2 °C from -25 °C to +100 °C

¶ ±3 °C from -55 °C to +125 °C

¶ Programmable temperature threshold and hysteresis set points

¶ Supply current of 1.0 µA in shutdown mode for power conservation

¶ Stand-alone operation as thermostat at power-up

Register Set
Table 8. Register Table

Register
Name

Pointer
Value

R/W POR
State

Description

Conf 0x01 R/W 00h Configuration register: contains a single 8-bit data byte; to
set the device operating condition;
Default = 0

Temp 0x00 Read Only n/a Temperature register: contains two 8-bit data bytes; to store
the measured Temp data

Tos 0x03 R/W 0x5000 Overtemperature shutdown threshold register: contains two
8-bit data bytes; to store the overtemperature shutdown
Tth(ots) limit;
Default = 80 °C

Thyst 0x02 R/W 0x4B00 Hysteresis register: contains two 8-bit data bytes; to store
the hysteresis Thys limit;
Default = 75 °C

Pointer Register

The Pointer register contains an 8-bit data byte, of which the two LSB bits represent the pointer value of the

other four registers, and the other 6 MSB bits are equal to 0, as shown in Table 9 and Table 10. The Pointer

register is not accessible to the user, but is used to select the data register for write/read operation by

including the pointer data byte in the bus command.

Table 9. Pointer Register

B7 B6 B5 B4 B3 B2 B[1:0]

0 0 0 0 0 0 Pointer Value

Table 10. Pointer Value

B1 B0 Selected Register

0 0 Temperature register (Temp)

0 1 Configuration register (Conf)

1 0 Hysteresis register (Thyst)

1 1 Overtemperature shutdown register (Tos)

Because the Pointer value is latched into the Pointer register when the bus command (which includes the

pointer byte) is executed, a read from the LM75B may or may not include the pointer byte in the statement.

To read again a register that has been recently read and the pointer has been preset, the pointer byte does not

have to be included. To read a register that is different from the one that has been recently read, the pointer

byte must be included. However, a write to the LM75B must always include the pointer byte in the statement.

At power-up, the Pointer value is equal to 00 and the Temp register is selected; users can then read the Temp

data without specifying the pointer byte.

For a full description of the functions of each of the registers, please refer to the datasheet.

http://www.circuitsurgery.com/docs/LM75B.pdf

MMA7660 ɀ 3-Axis Orientation/Motion Detection Sensor
The MMA7660FC is a ±1.5 g 3-Axis Accelerometer with Digital Output (I2C) featuring:

¶ Digital Output (I2C)

¶ 3mm x 3mm x 0.9mm DFN Package

¶ Low Power Current Consumption: Off Mode: 0.4 μA,

¶ Standby Mode: 2 μA, Active Mode: 47 μA at 1 ODR

¶ Configurable Samples per Second from 1 to 120 samples a second.

¶ Low Voltage Operation:

¶ Analog Voltage: 2.4 V - 3.6 V

¶ Digital Voltage: 1.71 V - 3.6 V

¶ Auto-Wake/Sleep Feature for Low Power Consumption

¶ Tilt Orientation Detection for Portrait/Landscape Capability

¶ Gesture Detection Including Shake Detection and Tap Detection

¶ Robust Design, High Shocks Survivability (10,000 g)

Register Definitions
Table 11. Register Summary

Address Name Definition Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x00 XOUT 6-bit output value
X

- Alert XOUT[5] XOUT[4] XOUT[3] XOUT[2] XOUT[1] XOUT[0]

0x01 YOUT 6-bit output value
Y

- Alert YOUT[5] YOUT[4] YOUT[3] YOUT[2] YOUT[1] YOUT[0]

0x02 ZOUT 6-bit output value
Z

- Alert ZOUT[5] ZOUT[4] ZOUT[3] ZOUT[2] ZOUT[1] ZOUT[0]

0x03 TILT Tilt Status Shake Alert Tap PoLa[2] PoLa[1] PoLa[0] BaFro[1] BaFro[0]

0x04 SRST Sampling Rate
Status

0 0 0 0 0 0 AWSRS AMSRS

0x05 SPCNT Sleep Count SC[7] SC[6] SC[5] SC[4] SC[3] SC[2] SC[1] SC[0]

0x06 INTSU Interrupt Setup SHINTX SHINTY SHINTZ GINT ASINT PDINT PLINT FBINT

0x07 MODE Mode IAH IPP SCPS ASE AWE TON - MODE

0x08 SR Auto-Wake/Sleep
and
Portrait/Landscape
samples per
seconds and
Debounce Filter

FILT[2] FILT[1] FILT[0] AWSR[1] AWSR[0] AMSR[2] AMSR[1] AMSR[0]

0x09 PDET Tap Detection ZDA YDA XDA PDTH[4] PDTH[3] PDTH[2] PDTH[1] PDTH[0]

0x0A PD Tap Debounce
Count

PD[7] PD[6] PD[5] PD[4] PD[3] PD[2] PD[1] PD[0]

0x0B-
0x1F

Factory Reserved - - - - - - - -

NOTE: To write to the registers the MODE bit in the MODE (0x07) register must be set to 0, placing the device

in Standby Mode.

For a full description of the functions of each of the registers, please refer to the datasheet.

http://www.circuitsurgery.com/docs/MMA7660.pdf

TCPT1300 ɀ Light Barrier
The TCPT1300X01 is a compact transmissive sensor that includes an infrared emitter and a phototransistor

detector, located face-to-face.

This sensor is connected directly to the Raspberry Pi GPIO port. The sender (transmitter) is connected to GPIO

23 (pin 16) and the receiver to GPIO 24 (pin 18).

Setting GPIO23 to logic “1” will switch on the infra red sender, and if the gap between the faces of the sensor

is clear, the receiver will pull GPIO24 high (logic “1”). Moving an opaque object into the gap will interrupt the

beam and will cause the receiver to switch off, and a logic “0” will be presented to GPIO24.

AH1887 ɀ Hall Effect Switch
This sensor detects the presence of a magnetic field, and also indicates its polarity.

Like the light barrier, it is connected directly to the Raspberry Pi’s GPIO port. Output 1 is connected to GPIO14

(pin 8) and indicates the presence of the South pole of a magnet by pulling the port low (logic “0”). Similarly,

Output 2, connected to GPIO15 (pin 10) indicates the presence of a North pole by pulling that pin low.

